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this 
o&o = a, gL* (vx)-‘I’ (4.7) 

In order to obtain a significant effect of stabilization at values of vibrational velocity 
which are reasonable from the experimental point of view, one should work with fluids 

which have the highest possible value of parameter VT for sufficiently small charac- 

teristic dimensions L. Thus, for a plane layer of water (6F = 0.0038 cma/ s) with a 

thickness of 2 mm a vibrational velocity oobo = 360 cm/s is obtained from (4.7) as 

necessary for complete stabilization. This means that at an amplitude of displacement 

of 2 mm stabilization occurs near 250Hz. This effect is much more strongly pronounced 

in fluids with a high value of the parameter I/v? (glycerin, olive oil, some silicone 

liquids). 
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The mode of flow over the windward side of a supersonic leading edge wing is examined. 
In spite of a number of investigations n-41, this problem has not been solved correctly. 
The difficulty consists in the fact that in the flow field behind a strong wave there are 

regions of homogeneous potential and vortex flows which must be matched with suffici- 
ent smoothness. 

An analytical theory is developed below for hypersonic flow past a wing with an 
attached wave. This theory allows to carry out the necessary conjuction of flows. 
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1. Let us examine the hypersonic flow past a slender conical wing. In the system of 

coordinates (r, 8, cp) shown in Fig.1 the equations of conical flows in variables (9, q) 
p] take the form 

W &I 

COB 0 rq - v= - w’ = 0, &~+uv+w’tge= -&g 
x II’ + va + w’ -II_+ 2 =c, a P 

x-l p SF3.0 (1.1.) 

-g-ln(pwe+)+2~cose-0, we,= vcosf) 

All variables in the equations are dimensionless and normalized with respect to the 
free stream velocity u, the density p” and the 
dynamic pressure p”Ua. The variable $ satisfies 

the relationship t.$s + UJ& SIX 8 = 0 and 

represents the stream surface in the conical flow. 
We shall seek the solution with the assumption 
that the region of perturbed flow is a strongly 

compressed thin layer. Then, according to the 

usual evaluations of the shock layer theory IJ-] , 
it is convenient to introduce the following trans- 

Fig. 1 formations : 

0 = 4, v - es, p = em16 (1.2) 

With the new variables (the bar on top is omitted) we have the system 

w au -_ _ eava - wa = 0, us + 4v’ + WI (xyi)p + 2 =c, P l/X 

case0 ap p.=w 
t ~~~+LLUfwae-ltgeO)e=-~~ 

i+s 
x= i-_e’ -$[lo(pw9~)]+2~cose0=0, w&=vcosee 

P.3) 

The variables w and ‘p are of the same order, therefore the form of this system does 
not change as the result of normalization of these quantities, and we can take 

rp = e”q (n > 0) 

The second equation (1.3) makes it possible to represent the pressure as the sum of 

two terms P = PI (cp, 4 + ePa (% cp, e) (1.4) 
Now let us perform a simplification, discarding in (1.3) and in the boundary conditions 

terms of the order ea and higher. Then the required functions will satisfy the following 

equations : 

BU 
-- 
acp w=o, wg + uv + w20 = - e-!-f!? , 

~0, w ua + w= = A= (I)‘) 

-& In (pw@) f 2 c = 0, we$,= v 

In this approximation the boundary conditions on the shock wave will assume the form 

U* = co9 a (co9 cp - eW tg a), m, = 2/ (x - 1) M&, sina a (1.6) 
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v+ = - fO,*cosasincp+(i +m,)sina+ecosa(8*cosrp- 
(cont.) 

- 9,* sin cp + e sin cd:] 
Wu* = - co8 a (sin cp + &I,* tg a), p* = sina a + 8pPr* 

p* = (1 + ms)-t 

PI* = sin 2a (e* co9 t+ - 0,* sin ‘p) - sina a - Mz 

From the ffow condition over the surface of the wing, i;iveri by the e;luation 8 = 

= ~0’ (cp),we have u - w e,o (VP) = 0 (1.7) 
In the derivation of the third equation (1.5), the form of the expression for pressure 

(1.6) and the fourth equation (1.3) were used, This equation can be written in the form 

B 
of the following relationship : 

1 1 
-=7 
P P il 

1-c & (Pt*’ - PI* - Pi! (1.8) 

The primes indicate that the corresponding values 
are values at the point of intersection of the shock 

wave with the streamline ( 9 = v’ in Fig.2). The 

pressure p1 (cp) can be determined directly from the 

ff 
$5 

value behind the shock wave (1.6). Setting p1 = 
p = p*, then the value pz on the shock wave is equal 

Fig, 2 to zero. It should be emphasized that the dependence 
of pa on the parameter & is determined from the solu- 

tion of the problem and may not have any analytic representation. However, if the prin- 
cipal term of the expansion of this function is of the order of e”,where a > - 1, the 

obtained results remain valid, and the discarded terms will be of an order higher than 
the first. 

The system (I, 5) permits to determine directly the velocity components u and w. 
In fact, eliminating tl from the first equation and integrating from an arbitrary point to 

the shock wave along the line J, = const (Fig. Z), we find that 

u = A (cp')cos Ig, + a ($)I, WE-.. A (9") sin fq~ + a ($)I (5.9) 

A 6~') = cos* cs - e sin 2a (f3*’ co9 cp’ - 8,*’ sin rp’) (1.10) 

a (cp’) = e tg a (8,*’ cos cp* + 8** sin cp’) 

Expressions for velocities (1.10) make it possible to represent the integral of the fifth 

equation of (X.5) in the form Pe+ ~‘0,’ 
- :.y - 

Wt 
(1.11) 

W 

We rewrite the relationship (1.11) in the integral form, replacing the integration with 
respect to variable v, by integration with respect to cp’. 

As a result we have 

8 = e79) + F iw L: O+‘\tVp’ dtp’ (1.22) 
T'W 

Here (p” (9) is an arbitrary function corresponding to a streamline on the surface of 
the wing. It is assumed that the wing is slender and the function 8” - E,. The factor 
B*‘&,* can, according to the last equation of system (1.5) and the second condition 
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(1.6), be replaced by the expression 

0( rp# = ~-(~~=~{(l+m,)sinccI11+~~ (e*~cos~~-e,*~siq~~~~ 

Substituting (1.8) and (1.13) into (1.12), we find that 
. 

e=80(9)+(l+m,)sinrc~‘~R~~~ 
s 

CD0 (1.14). 

R=-l+e 
(e*’ COB cp’ - tl,+“sin cp’) c tg a 

i+mO + ha (PI*’ - PI* - Pd] 

From here we obtain the relationship for the shock wave when cp’ = cp 

O*=B”(‘P)+(f+m.)sinaj ;R Cl@ 
cpo d 

(1.15) 

In addition to the surface of the shock wave, Eq. (1.15) contains also two unknown 
functions (p” and p,.To find the first of these, we take advantage of the flow condition 

(1.7). which, by taking into account (1.5) and (1.14). is reduced to the following form: 

dg (w)*,_. = 0 (1.16) 

This equation allows two solutions 

‘p” = const 

2’ (~0) cos ‘p” + 2 (q”) sin cp” = - cp clg’ a, z(q) =ectgaO*(cp) (2.17) 

In the exact solution the surface of the wing is the stream surface, therefore ‘p” = fi 

(p is the half-angle at the apex of the wing). However, as was pointed out in p]. hyper- 
sonic solutions for finite bodies may not satisfy this condition. Without dwelling on the 
analysis of possible cases, we point out that the theory which is being developed for wings 
having a region of homogeneous flow near the edges, it is necessary to assume that $= 

= const. Singularities which can arise in this connection are examined below. 
We turn now to finding the second unknown function ps. First of all we note that the 

pressure pa enters everywhere with the coefficient e and it is sufficient to determine the 
principai term. We shall find the pressure pa from the second equation (1.5) by integra- 

ting this equation over the line cp = const from the shock wave to an arbitrary point. 
As a result we find that 

pq = sin a 
(Dd 

s 3 (%v + 0) dcp’ (5.18) 
cb 

If now (1.14) is differentiated twice and the result substituted into (1.18), we shall 
have 

pq = sin a (00 + 0;) 
8tu’ 

s 
0’ 

pdvC+2sinqa(i +m,){[coscp(r+a~) + 

Ow’ ’ 
-l-si~~(~‘+f’)l\~?_dcp’, (~S)p,=CdE-2sinrp(a+ c 

(1.19) 
2 

-I- 2”) 5 $b%$ ($)q,cE d-51 
cp’ 
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The first term in (1.19) characterhes the influence of curvature of the transverse con- 
tour, the second term the infhence of curvature of the shock wave. In Eq. (1.19) terms 

~~ta~n~g the quantities eper and rp,,, are omitted. The basis for this are estfmates 
of discarded terms which with accuracy to an insignificant constant have the following 

Ass~rn~g that pz - a (e), we have pzrp - e-%8 (ej and pBIGp .- e’-” a&), Taking 
into account that u - i; w - $A (for ‘p g tps) and that w’changes its order from 
1 to i+, we obtain_fi* - 6, - Ea (e). Consequently, in the region of nonhomogeneous 
flow where gt N fe, the indicated pressure gradients with the corres~nding weight 
functions have a higher order of smallness than the rema~lng terms of the equations, 

and the principal term for the pressure pn is determined by Eq. (I, 19). fn the region of 
homogeneous flow ps becomes zero. 

Substituting (1.19) into (1.15) we obtain for the surface of the shock wave the follow- 
ing integro-differential equation 

2 + 8 [2L, (2 co9 cp - 2’ sin cp) - &I + 28 (2” + 2’“) I;, - 2” = 

= 286 ((2 + 2”) I2 sin q& - cosgtl;bj - (z’ + 2”‘) sin rp Lb} 

z = i! ctg cd* (q$, 2’ = e ctg a 8” (rp)+ 8 = e CO8 a (-1 4”” m,) 

(1.20) 

The coefficients Li are complicated functional of the shape of the shock wave z. In 

some cases, however, for example when the wave is plane, the quadratures are readily 
computed and all Li are represented by finite expressions. This situation is utilized 
later in the construction of the solution. Let us examine now the structure of Eq. (1.50) 

in more detail. The right side of this equation contains terms of higher order than the 
left side, and it may appear that they can be neglected. However, the totality of all 
terms in the left part of the equation is identically equal to zero at the point of conjunc- 
tion. Therefore, near this point the left side may have the same order of smallness as 

the right side which contains the higher derivative, The presence of the latter allows to 

make a smooth conjunction of the plane wave with the curved wave(*) I In this case, 

; )This situation was not noted in any of the previous investigations, including the last 
papers [3,4]. Therefore, attempts to construct solutions on the basis of an equation which 
differs from fl. 20) by having a zero in the right side, ended without success. 
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according to (1.20). a discontinuity of curvature arises at the point ri (Fig. 2). It should 

be noted that although the system (1.5) and boundary conditions (1.6) and (1.7) allow 
an error in terms of the order higher than the first from the very beginning, the most 

accurate possible solution of the approximate equations is sought. It is evident from the 
analysis of (1.20) that in the flow field there are regions in which the principal terms of 
their combinations become zero, and the behavior of the solution is determined by small 

additional terms. It is not always possible to determine in advance where and which of 
the small terms will turn out to be substantial, especially when the flow is complicated, 

as for example in the vicinity of the point of conjunction. In this case the retaining of 

all terms permits the detection of fine effects which make a major contribution in the 

region where the flows are matched. 
Let us turn directly to the finding of solution (1.20). We shall seek the equation for 

the surface of the shock wave in the region 0 < cp < cps in the form of a series 

(1.21) 

The values of functions z (cpz) and Z' (cp,) are given by the conditinn of smooth con- 

junction with the homogeneous flow. At the point cpa the coefficients L, are continuous 
and known. Therefore it is not difficult to establish a connection between Z”’ (cps) and 

Zt4) (cpz) from (1.20). By successive differentiation of (1.20) we can find analogous 

relationships between ~(~1 (cp,), z(s) (cps) , etc. As a result the series (1.21) depends on 
only one arbitrary constant which can be easily found from the condition Z’ (0) = 0 
in the plane of symmetry. 

We can show that in the constructed solution the regions of homogeneous potential 

and vortex flows are matched in a continuous manner. 
Although the curvature of the shock wave suffers a discontinuity at the point of con- 

junction, the gasdynamic characteristics still remain continuous. For simplicity we limit 

ourselves to the case of a flat wing (2’ E 0) and examine the behavior of pressure in 
the vicinity of the line cp = cp~ . It is evident from Eq. (1.4) that the discontinuity can 
arise only from the second term of PI. To the right of point p, expression (1.19) gives 

PI = 0; to investigate the pressure from the left we apply the relationship (1.26). then 
we again obtain p2 = 0. Consequently the pressure is continuous inside the flow region. 

The second characteristic which depends on the curvature of the wave is the velocity 

component V. Omitting the calculations we can make the conclusion that within the 
required accuracy to terms of es, the velocity u remains continuous. 

e Another important point is the obtaining of the 
topological picture of stream surfaces from the solu- 

tion. Let us study the distribution of streamlines on 
a sphere r = const after they have passed through 
a plane shock. According to (1.10) all these lines 

have a critical point (0, cpl) on the node type (Fig. 
3). This node is located at a very short distance 

Fig. 3 

from the plane of symmetry (-etg%), however, 
it does not coincide with it. Weak curvatureof stream 
surfaces to the left of the characteristic cp = (pa is 
due to the change in function R. 
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Examination of streamlines which pass through the curvilinear shock reveals the pos- 
sibility that these lines may intersect with the surface of the wing OC which in this 

region becomes singular (Fig. 3). It tums out that for Q < Qr (point B in Fig. 3) a 
range of values @ < Q’ < p exists for, which the quantity 0 assumes negative value. 
Thus, the solution encompasses a region on the other side of the wing down to the curved 

streamline EC. Formally, this region may be retained, if a real significance is attributed 

to all expressions only for 8 > 0. How$v~~ if a new function Q” (Q) (0 -< Q < Qt) 
which is determined by the equation 

s 
-$XdQ’ =o 

is introduced and the variation of the v&able Q’ is limited to the interval Q < Q’ < 

<Q* (Q),titen the region 8 < 0 is excluded automatically. In this case the limit of 

integration p is replaced by the quantity Q’ (Q), and the form of some expressions 
changes on differentiation. It is understandable that both approaches give one and the 
same result and lead to the necessity of satisfying the condition of flow on the line UC. 

Through the estimation of normal velocity it will be demonstrated that this condition is 

satisfied. If we take into account that v = we*, 8, - S/Q0 and w -+ a@, we obtain 
that v - es, and the condition of flow is satisfied within the required accuracy. 

In this connection it is necessary to note that although the constructed solution satisfies 

all equations and boundary conditions in the region adjacent to the section oc, the 
accuracy of the approximating system declines. Here, just as in the theory of hypersonic 
conic&flows, it is necessary to take into account the entropy layer. As a result, in the 
region bounded in Fig. 3 by a dashed line, there will be a different velocity d~~ibution 

and the singularities on the section fX! will disappear. 
The solution of Eq. (1.20) in the form of a series (1.21) is convenient because of its 

simplicity for carrying out concrete computations. However,it does not present the pos- 
sibility to establish the form of the dependence of the solution on the parameter e. In 

order to analyze the desired dependence, we can take advantage of the perturbation 

method. For a = 0 the solution z ns 0 satisfies the boundary conditions and Eq. (1.20). 

If it is taken as the zeroth approximation of the solution for e # 0, all integrals Li can 
be computed. As a result Eq. (1.20) becomes a differential equation and for small rp 
reduces to Euler’s equation of the third order. The solution of the latter contains terms 
of the form exp (&fsln cp) which indicate the nonlinear character of the dependence on 

a. The direct substitution of this solution into (1.19) permits to establish that terms 6% 

and 8, correspond to estimates presented above. 

2, The general relationships obtained above can be applied to the flow over a trian- 

gular plate at an angle of attack, 
The angle at the apex oi the plate is designated by 20 . For simplicity the Mach 

number will be assumed to be equal to infinity (m,, = 0). In this case the function 

2” = 0 and the coefficients 4, computed along the plane wave 2 = U Sin (0 - Q), 
are determined by the following relationships: 

i +&sin@ sin@--VP) 
b= &l Xii@- ' 

L 
a 

= sin (P---(P) 
Al sin (p - 91) 
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Al=cosa(i-2uttg’asinP)“‘, <pl=crtg*actgp 

d= i W3* (B - 91) sin8 ((p - cpl) + y 1 ctg(B-‘pi)sin(B-_)sin2(cp--cpl) _ 
ain (P - cps 

- + cos’(cp - a) 

In this problem the coefficient L, drops out (the wing ls plane) ; the coordinate qa is 
determined by the line of intersection of the Mach cone for the homogeneous flow behind 

the shock wave, with the wing surface. Its value is found from the expression 

sin (cpa -r&) r= &(q2p*)“’ (2.2) 

Equation (2.2) shows in particular that ‘pa - r e. Let us substitute now the equation 

of the plane wave into (1.20); we obtain 
1 +esel9a 

a C ’ sin (p -VI) 
(2.3) 

and in physical coordinates the equation of the plane shock assumes the form 

e sec2 a) sin (p - cp) 
Cl*==etga (I+ sin(P_-‘pl) 

The pressure in the homogeneous flow behind the shock is determined by the formula 

p=p* =sin’a+e 
[ 
si~i2R;spi~~: a (1 + E sd a) - sin* a] (2.4) 

The curvilinear region of the wave is found with the aid of series (1.21). As a preli- 

minary step, the coefficients t, calculated from Eqs. (2.1) are substituted into Eqs.(L20) 

for cp = 9~. Then at the point ‘pt the following relationship exists between the deriva- 

tives : zI I, = - (2%” + zl) k - z2’, k = 2 ctg ((~g - cpd + ctg ‘pa 

z!4 = 2 (%) (2.5) 

Analogous relationships can be established also between derivatives of higher order 

d41, s(s) etc. if successive differentiation of (1.20) is carried out. 

For simplicity let us limit the series (1.21) to four terms. In this approximation. uti- 
lizing the boundary condition Z’ (0) = 0, we obtain the following expression for the 

second derivative : n _ 
% - 

22’ (2 - cpz? - fqb*zz 
92 (2 + Nz) 

(2.6) 

Equation (2.6) allows to determine directly the order ~a”. In fact, cps - vi, 2s and 

2s’ - e, therefore, 2s” is - c/c From (2.5) we find correspondingly that z,“’ - 1. 

It is not difficult to establish that the shock wave is convex upward (the sign of us”<. 
The relationship (2.5) permits to represent the series (1.21) in the following form: 

2 (cp) = z, + 21’ (9 - CPA + ‘41 ~2” (cp - ‘pAa - ‘/a I(za + z,“) k + 

+ %‘I (cp - ‘Pa)’ -!- . . . (2.7) 

The second derivative is eliminated by means of (2.6). Having established the shape 
of the shock wave, the remaining characteristics of the flow field are readily found. 

Let us examine some data on pressure distribution on the surface of the wing. In Fig. 
4 the pressure coefficient ls shown as computed from the first approximation taking into 

account ps(dashed line). A comparison is made with corresponding quantities obtained 
in [3] by method of finite differences and Newton’s theory (dashed line). In the same 
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figure results are presented for comparison with experimental data [6] at M = 5. it is 

0.6 

Fig. 4 Fig, 5 

evident from the location of curves 
that agreement of data is sufficiently 

good. 
3. As the second example we shall 

examine the flow over a triangular 

wing with a V-shaped cross section. 

The half-angle at the apex of the wing is designated by fl . The angle measured in 

6.6 
the plane of the cross section is desig- 
nated by y (Fig. 5). The equation of the 
transverse contour Z” is determined by 

0.6 

0.4 

the expression z” = ctg’ CZY Sin+ 

It is assumed that y < E. Coeffici- 
ents L, computed for the plane region 

of the shock wave remain equal to 
expressions (2.1). In this case the equa- 
tion of the wave is 

2 = 2” (q) f a sin (fi - cp) 

The coefficient L, again drops out, 

z 

Fig. 6 

Equations (2.2) and (2.3) remain un- 

changed with the required accuracy, 

As a result the equations of the plane 
shock assume the following form in 
physical coordinates 

8* = ysinq, + etga(i+eeecia)ain(p--) 
ein (I3 - 91) (3.1) 

Let us determine now the curvilinear region of the wave. At the point A , Eq. (1.20) 

and the coefficients _& coincide with the case of the plane wing. Therefore, relations 
(2.5) and (2.6) can also be used for the V-shaped wing. Taking into account the previ- 
ous statement, the series (2.7) will represent the shock wave if the values 2, and z,’ are 
determined from (2.8). The qualitative analysis of the solution connected with the dis- 
cont~ui~ in curvature, the entropy layer, etc., can be omitted because it does not con- 
tain new aspects as compared with the analysis which was carried out for the plane wing. 
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Computations of pressure distribution on the wing, and the shape of the shock wave are 
presented in Fig. 6 for several values of the angle y and the angle of attack. The graphs, 
which are constructed form the first approximation, permit to draw the conclusion that 

the pressure change is fnsignificant along the span of the wing. The principal change is 
observed near the plane of symmetry, where for decreasing ‘)? an increase in the values 

of pressure takes place. 
We note that the theory is applicable to flows without internal shocks, therefore the 

angle y can change in a relatively narrow range. 
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Many results in the theory of hypersonic flows past slender bodies are based on the ana- 

logy with unsteady flows in a space with one fewer dimensions. This analogy was devel- 
oped by the authors of papers (l-43. However, its use for calculating gas parameters near 
the surface of a body often entaIls considerable errors, For the purpose of accurate deter- 

mination of flow characteristics throughout the domain, the authors of [5-93 developed 

the notion of a high-entropy layer which contains estimates of the required quantities 
along the streamlines intersecting the front of the strong bow shock wave. Entropy layer 

methods have proved especially convenient in dealing with inverse aerodynamic problems 
in whfch the position of the shock wave is assumed to be given and the shape of the body 

must be determined in the course of solution. Specifically, the authors of [6-93 investi- 
gated the problem of the body shape associated with the motion of a gas due to an intense 
explosion. 

The analysis of the results of Sychev and Yakura carried out by the authors of (lOI 


